# Preparation and Crystal Structure of K<sub>2</sub>YNb<sub>5</sub>O<sub>15-δ</sub>

N. Kumada and N. Kinomura

Faculty of Engineering, Yamanashi University, Miyamae-cho 7, Kofu, 400 Japan

Received July 28, 1995; in revised form February 5, 1996; accepted February 8, 1996

Single crystals of new reduced potassium yttrium niobate,  $K_2YNb_5O_{15-\delta}$ , were prepared in a  $H_2$  atmosphere at 1200°C. Potassium yttrium niobate crystallizes in the orthorhombic space group *Cmmm* with a = 10.316(1), b = 15.257(1), and c = 3.914(1) Å, Z = 2, and the final *R* factors are R = 0.046 and  $R_w = 0.047$  for 1077 unique reflections. The crystal structure is built up by corner-sharing of NbO<sub>6</sub> octahedra and the three-dimensional framework formed by the Nb<sub>5</sub>O<sub>15</sub> units is same as that of the NaNb<sub>6</sub>O<sub>15</sub>F-type structure. The Y<sup>3+</sup> ion is located in a distorted perovskite-like cavity and the K<sup>+</sup> ion is in a pentagonal tunnel. Reduced potassium yttrium niobate,  $K_2YNb_5O_{15-\delta}$ , is oxidized without deterioration in crystal-linity at about 450°C, and the oxidized phase,  $K_2YNb_5O_{15}$ , transforms to the tetragonal tungsten bronze-type structure at 1150°C.  $\odot$  1996 Academic Press, Inc.

## INTRODUCTION

Niobium can adopt various oxidation states and many reduced complex niobates have been reported (1-10). Reduced complex niobates can be divided into two groups; strongly reduced complex niobates with metal-metal bonding and weakly reduced ones without metal-metal bonding. Many of the strongly reduced complex niobates are characterized by having the  $[Nb_6O_{12}]O_6$  cluster as found in complex niobates such as  $Rb_{1.51}Nb_{10}O_{15}$  (1),  $NaNb_{10}O_{18}$  (2),  $Rb_4Al_2Nb_{35}O_{70}$  (3), etc. Recently we discovered a strongly reduced rubidium niobate,  $Rb_{1.51}Nb_{10}O_{15}$  (1), and attempted soft-chemical reaction of this niobate (11). On the other hand, perovskite-type compounds,  $A_x$ NbO<sub>3</sub> (A = Sr, Ba, Eu) (4–6), and phosphatoniobates such as  $KNb_3P_3O_{15}$  (7),  $K_3Nb_6P_4O_{26}$  (8), and  $K_3Nb_8O_{21}$  (9) are known as the weakly reduced complex niobates. Reduced strontium rare-earth niobates, (Sr, Ln)Nb<sub>2</sub>O<sub>6- $\delta$ </sub> (Ln = La, Nd, Pr, Ce), were reported to be superconductors with  $T_c \sim 12$  K (10), but Istomin et al. could not confirm the superconductivity (12).

During the investigation of new reduced complex niobates we found a new phase,  $K_2YNb_5O_{15-\delta}$ . Its three-dimensional framework is similar to that of the NaNb<sub>6</sub>O<sub>15</sub>Ftype structure (13) and can be related to those of the TlCa<sub>2</sub>Ta<sub>5</sub>O<sub>15</sub>-type structure (14–16) and the tetragonal tungsten bronze-type structure (17, 18), having a basic structural unit of  $M_5O_{15}$  (M = Nb,Ta). In these structural types large ions are accommodated in hexagonal or pentagonal tunnels while ions with medium size, such as Ca<sup>2+</sup> and Y<sup>3+</sup>, are found in distorted perovskite-like cavities. We describe here the crystal structure of K<sub>2</sub>YNb<sub>5</sub>O<sub>15- $\delta$ </sub> and its thermal behavior.

## **EXPERIMENTAL**

#### Sample Preparation

Black single crystals of  $K_2YNb_5O_{15-\delta}$  were obtained as follows. A mixture of  $K_2CO_3$ ,  $Y_2O_3$ , and  $Nb_2O_5$  with a molar ratio of 4:1:8 was heated in a stream of hydrogen at 1200°C for 1 h. The products always contained a large amount of colorless crystals and water-soluble phases in addition to  $K_2YNb_5O_{15-\delta}$ . The colorless crystals were removed by decantation and the water-soluble phases were dissolved with distilled water. Powder samples were identified by X-ray powder diffraction using CuK $\alpha$  radiation. Thermal stability was investigated by TG-DTA with a heating rate of 10°/min.

## Structure Determination

Single crystal X-ray diffraction data were collected by using a Rigaku AFC-7R four-circle diffractometer with graphite monochromated Mo $K\alpha$  radiation using the  $\omega$ -2 $\theta$ scan technique ( $D\omega = (1.00 + 0.30 \tan \theta)^\circ$ ). The data were corrected for Lorentz and polarization effects. Absorption effects were corrected by using  $\psi$  scans. The crystal structure was solved and refined with the computer programs from the TEXSAN crystallographic software package (19). The lattice parameters were determined from 20 reflections measured by the four-circle diffractometer. Details of the data collection and refinement are summarized in Table 1. The atomic positions of Nb, Y, and K were determined by direct methods and subsequent Fourier analysis revealed the positions of the oxygen atoms.

The facts that the color of the crystals is black and the weight gain is observable in the TG curve as mentioned

| ~                                         |                                    |
|-------------------------------------------|------------------------------------|
| Color                                     | Black                              |
| Size (mm)                                 | $0.10 \times 0.10 \times 0.30$     |
| Crystal system                            | Orthorhombic                       |
| Space group                               | <i>Cmmm</i> (No. 65), $Z = 2$      |
| Lattice parameters (Å)                    | a = 10.316(1)                      |
|                                           | b = 15.257(1)                      |
|                                           | c = 3.914(1)                       |
| Volume (Å <sup>3</sup> )                  | 616.1(3)                           |
| Formula weight                            | 871.63                             |
| Calculated density (g/cm <sup>3</sup> )   | 4.70                               |
| Diffractometer                            | Rigaku AFC-7R                      |
| Radiation                                 | Graphite monochromated             |
| ΜοΚα                                      | $(\lambda = 0.71069 \text{ Å})$    |
| Temperature (°C)                          | 23                                 |
| $\mu$ (MoK $\alpha$ ) (cm <sup>-1</sup> ) | 97.54                              |
| Maximum $2\theta$ (°)                     | 90                                 |
| Scan mode                                 | $\varphi$ -2 $\theta$              |
| Scan speed (°/min)                        | 16                                 |
| Number of data collected                  | 1477                               |
| Number of unique data                     | $1077 \ (I > 3.00\sigma(I))$       |
| Absorption correction                     | $\Psi$ scans                       |
| Transmission factors                      | 0.94-0.98                          |
| Refinement method                         | Full-matrix least-squares on $ F $ |
| Number of parameters                      | 45                                 |
| R                                         | 0.046                              |
| $R_{ m w}$                                | 0.047                              |
| Goodness of fit                           | 1.87                               |
|                                           |                                    |

 TABLE 1

 Crystal Data and Intensity Collection for K<sub>2</sub>YNb<sub>5</sub>O<sub>15-δ</sub>

 TABLE 2

 Positional and Anisotropic Thermal Parameters (Å<sup>2</sup>)

 for  $K_2$ YNb<sub>3</sub>O<sub>15- $\delta$ </sub>

| Atom  | Site       |      | x        |      | у        | z   | $B_{ m eq}^{*a}$ | Occup    | ancy     |
|-------|------------|------|----------|------|----------|-----|------------------|----------|----------|
| Nb(1) | 8q         | 0.19 | 126(4)   | 0.12 | .908(3)  | 1/2 | 0.700(5)         | 1        |          |
| Nb(2) | 2c         | 1    | /2       |      | 0        | 1/2 | 2.38(3)          | 1        |          |
| Y     | 2a         |      | 0        |      | 0        | 0   | 2.12(3)          | 1        |          |
| Κ     | 4i         | 1    | /2       | 0.2  | 053(1)   | 0   | 1.98(3)          | 1        |          |
| D(1)  | 8q         | 0.36 | 72(4)    | 0.0  | 917(3)   | 1/2 | 2.9(1)           | 1        |          |
| D(2)  | 8p         | 0.17 | 03(8)    | 0.1  | 197(4)   | 0   | 2.9(1)           | 1        |          |
| D(3)  | 4f         | 1    | /4       |      | 1/4      | 1/2 | 1.3(1)           | 1        |          |
| D(4)  | 4h         | 0.13 | 21(5)    |      | 0        | 1/2 | 1.0(1)           | 1        |          |
| D(5)  | 2b         |      | 0        |      | 1/2      | 0   | 4.1(3)           | 1        |          |
| D(6)  | 4 <i>j</i> |      | 0        | 0.1  | 557(5)   | 1/2 | 3.4(2)           | 1        |          |
| Atom  | $U_1$      | 11   | $U_{22}$ | 2    | $U_{33}$ |     | $U_{12}$         | $U_{13}$ | $U_{23}$ |
| Nb(1) | 0.010      | 5(1) | 0.0063   | 8(1) | 0.0097   | (1) | -0.0019(1)       | 0        | 0        |
| Nb(2) | 0.019      | 9(5) | 0.0088   | 3(4) | 0.062(   | 1)  | 0                | 0        | 0        |
| Ŷ     | 0.013      | 7(5) | 0.059(   | 1)   | 0.0081   | (4) | 0                | 0        | 0        |
| Κ     | 0.039      | (1)  | 0.0164   | (7)  | 0.0198   | (9) | 0                | 0        | 0        |
| D(1)  | 0.006      | (1)  | 0.011(   | 1)   | 0.094(6  | 5)  | 0.003(1)         | 0        | 0        |
| D(2)  | 0.083      | (5)  | 0.024(   | 2)   | 0.005(   | 1)  | -0.013(3)        | 0        | 0        |
| D(3)  | 0.014      | (2)  | 0.007(   | 2)   | 0.029(3  | 3)  | -0.002(2)        | 0        | 0        |
| D(4)  | 0.008      | (2)  | 0.006(   | 2)   | 0.024(3  | 3)  | 0                | 0        | 0        |
| D(5)  | 0.023      | (5)  | 0.13(2   | )    | 0.001(3  | 3)  | 0                | 0        | 0        |
| D(6)  | 0.008      | (2)  | 0.016(   | 3)   | 0.105(9  | 9)  | 0                | 0        | 0        |
|       |            |      |          |      |          |     |                  |          |          |

 ${}^{a} B_{eq} {}^{*} = (8\pi^{2/3}) \Sigma_{i} \Sigma_{j} U_{ij} a_{i}^{*} a_{j}^{*} a_{i} a_{j}.$ 

later imply that some of oxygen atoms are deficient. Therefore, the occupancies of all oxygens were refined at first, and then that of O(3) was revealed to be less than unit and the final R factors were R = 0.046 and  $R_w = 0.047$  for 1077 unique reflections. However, the final R factors did not change when the occupancies of all oxygens were fixed to be unit, and the positional parameters did not change significantly compared with those for the oxygen deficient model. Probably the extent of oxygen deficiency was so small that any significant difference did not result from the two models. The position and extent of oxygen deficiency cannot be clarified from the structural analysis using single crystal X-ray diffraction data. The final positional and anisotropic thermal parameters are summarized in Table 2. Selected interatomic distances and angles are listed in Table 3.

# **RESULTS AND DISCUSSION**

# Preparation of $K_2 YNb_5 O_{15-\delta}$

Tetragonal tungsten bronze-type  $K_2YNb_5O_{15}$ , (denoted as TTB- $K_2YNb_5O_{15}$  hereafter) (20) is prepared by heating a stoichiometric mixture of  $K_2CO_3$ ,  $Y_2O_3$ , and  $Nb_2O_5$  at 1200°C in air. Attempts to prepare the reduced potassium yttrium niobate,  $K_2YNb_5O_{15-\delta}$ , by reducing TTB- $K_2YNb_5O_{15}$  in a  $H_2$  atmosphere were unsuccessful; TTB-

TABLE 3Selected Interatomic Distances (Å) and Angles (°)for  $K_2 YNb_5O_{15-\delta}$ 

| Nb(1)-O(1)<br>-O(2)<br>-O(3)<br>-O(4)<br>-O(6)                                                                  | $\begin{array}{c} 1.903(4) \\ 1.974(1) \times 2 \\ 1.9419(4) \\ 2.062(2) \\ 2.015(2) \end{array}$                                                                                           | $\begin{array}{c} O(1)-O(2)\\ O(1)-O(3)\\ O(1)-O(4)\\ O(2)-O(3)\\ O(2)-O(4)\\ O(2)-O(6)\\ O(3)-O(6)\\ O(4)-O(6) \end{array}$ | 2.853(7)<br>2.701(4)<br>2.799(6)<br>2.909(4)<br>2.705(4)<br>2.687(6)<br>2.953(4)<br>2.739(7)                           |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Nb(2)-O(1)<br>-O(5)<br>K-O(1)<br>-O(2)<br>-O(2)<br>-O(3)<br>-O(5)<br>-O(6)                                      | $\begin{array}{c} 1.958(4) \times 4 \\ 1.959(1) \times 2 \\ 2.952(4) \times 4 \\ 3.197(7) \times 2 \\ 3.644(8) \times 2 \\ 3.3086(5) \times 4 \\ 3.132(2) \\ 2.885(6) \times 2 \end{array}$ | O(1)-O(1)<br>O(1)-O(1)<br>O(1)-O(5)<br>Y-O(2)<br>-O(4)<br>-O(6)                                                              | $\begin{array}{l} 2.797(9)\\ 2.740(9)\\ 2.768(3)\\ 2.534(7)\times 4\\ 2.385(3)\times 4\\ 3.078(6)\times 4 \end{array}$ |
| O(1)-Nb(1)-O(2)<br>O(1)-Nb(1)-O(4)<br>O(2)-Nb(1)-O(3)<br>O(3)-Nb(1)-O(6)<br>O(1)-Nb(2)-O(1)<br>Nb(1)-O(4)-Nb(1) | 94.7(3)<br>89.3(2)<br>95.9(2)<br>96.5(2)<br>88.8(3)<br>145.6(3)                                                                                                                             | O(1)-Nb(1)-O(3)<br>O(2)-Nb(1)-O(4)<br>O(2)-Nb(1)-O(6)<br>O(4)-Nb(1)-O(6)<br>O(1)-Nb(2)-O(5)<br>Nb(1)-O(1)-Nb(2)              | 89.3(1)<br>84.1(2)<br>84.7(3)<br>84.4(3)<br>90.0<br>151.9(3)                                                           |



FIG. 1. TG-DTA curves of  $K_2 YNb_5O_{15-\delta}$ .

 $K_2$ YNb<sub>5</sub>O<sub>15</sub> remained intact at 1000°C and decomposed to NbO<sub>2</sub> and unknown phases at 1200°C. Heating the stoichiometric mixture in a H<sub>2</sub> atmosphere resulted in the formation of blue unknown phases with low crystallinity at 1000°C or the formation of a mixture of NbO<sub>2</sub> and TTB- $K_2$ YNb<sub>5</sub>O<sub>15</sub> at 1200°C. Thus the reduced potassium yttrium niobate,  $K_2$ YNb<sub>5</sub>O<sub>15- $\delta$ </sub>, cannot be prepared by heating a stoichiometric mixture in a H<sub>2</sub> atmosphere or by reducing TTB-K<sub>2</sub>YNb<sub>5</sub>O<sub>15</sub>, while single crystals of the new potassium yttrium niobate,  $K_2$ YNb<sub>5</sub>O<sub>15- $\delta$ </sub>, are obtained by heating a mixture of K<sub>2</sub>CO<sub>3</sub>, Y<sub>2</sub>O<sub>3</sub>, and Nb<sub>2</sub>O<sub>5</sub> with a molar ratio of 4:1:8 at 1200°C in a H<sub>2</sub> atmosphere. Probably a large excess of K<sub>2</sub>CO<sub>3</sub> plays an important role in preparation of the new reduced potassium yttrium niobate.

# Thermal Behavior and Oxygen Deficiency of $K_2 YNb_5O_{15-\delta}$

As shown in Fig. 1,  $K_2 YNb_5O_{15-\delta}$  is oxidized by heating in air, accompanied with an endothermic peak and a weight gain of 1.3 wt% at about 450°C. Black K<sub>2</sub>YNb<sub>5</sub>O<sub>15-δ</sub> turns to colorless above 500°C. The oxidized product shows a very similar X-ray powder pattern to that of  $K_2 YNb_5O_{15-\delta}$ and can be regarded as K<sub>2</sub>YNb<sub>5</sub>O<sub>15</sub> isostructural with  $K_2 YNb_5O_{15-\delta}$ . Then the oxidized product of  $K_2 YNb_5O_{15-\delta}$ is denoted as O-K<sub>2</sub>YNb<sub>5</sub>O<sub>15</sub> hereafter. Lattice parameters for O-K<sub>2</sub>YNb<sub>5</sub>O<sub>15</sub> were determined to be a = 10.295(1), b = 15.253(1), and c = 3.903(1) Å, indicating a volume decrease of 0.51% during the oxidation. In accordance with this small volume change, a black single crystal of  $K_2 YNb_5O_{15-\delta}$  was found to change to a colorless single crystal of O-K<sub>2</sub>YNb<sub>5</sub>O<sub>15</sub>. The colorless crystal is reversibly converted into the black one by heating at 1000°C in a H<sub>2</sub> atmosphere, in contrast to the behavior of TTB- $K_2$ YNb<sub>5</sub>O<sub>15</sub> mentioned above.

The X-ray powder pattern for the sample heated up to  $1200^{\circ}$ C in air is identified with that for the tetragonal tungsten bronze-type K<sub>2</sub>YNb<sub>5</sub>O<sub>15</sub> (20). Upon the transformation from  $O-K_2YNb_5O_{15}$  to TTB- $K_2YNb_5O_{15}$ , the volume decrease is calculated to be 1.75% and the crystals are deteriorated. The weak endothermic peak at 1150°C in the DTA curve probably corresponds to the transformation to the tetragonal tungsten bronze-type structure and the strong endothermic peak at 1240°C to the melting of the sample.

Structural analysis of a single crystal of O-K<sub>2</sub>YNb<sub>5</sub>O<sub>15</sub>, which was selected from colorless crystals obtained by oxidizing crystals of K<sub>2</sub>YNb<sub>5</sub>O<sub>15- $\delta$ </sub> at 1000°C in air, leads to R = 0.055 and  $R_w = 0.057$  for 1465 unique reflections and indicates no major change of crystallographic parameters from those for K<sub>2</sub>YNb<sub>5</sub>O<sub>15- $\delta$ </sub>.

The oxygen deficiency for  $K_2 YNb_5O_{15-\delta}$  could be calculated to be  $\delta = 0.70$  from the weight gain of 1.3 wt%. However, this value is overestimated, because the samples measured always contained small amounts of oxidizable impurities. The amount of oxygen deficiency could not be also determined precisely by the TG measurement. The exact extent of oxygen deficiency remains ambiguous at this moment of time.

# Crystal Structure of $K_2 YNb_5O_{15-\delta}$

The three-dimensional framework in the crystal structure of  $K_2YNb_5O_{15-\delta}$  is built up by corner-sharing of NbO<sub>6</sub> octahedra as shown in Fig. 2. The Nb<sub>5</sub>O<sub>15</sub> structural unit in  $K_2YNb_5O_{15-\delta}$  is formed by one Nb(2)O<sub>6</sub> octahedron and four Nb(1)O<sub>6</sub> octahedra as depicted in Fig. 3. Each octahedron shares O(2) or O(5) at the top and bottom of the octahedron along the crystallographic *c* axis. The Nb(1)O<sub>6</sub> octahedra are connected to the adjacent Nb<sub>5</sub>O<sub>15</sub> unit by sharing O(6) on the horizontal plane of the octahedra along the *a* axis. The infinite Nb<sub>5</sub>O<sub>15</sub> slabs are orientated perpendicular to the *b* axis and stacked along the *b* axis, connected by O(3). All Nb–O distances are in the range 1.9–2.0 Å, in agreement with the Nb–O distance found for pentavalent niobium with octahedral coordina-



**FIG. 2.** Crystal structure of  $K_2 YNb_5O_{15-\delta}$ .

tion (16). The O–Nb(1)–O angles are  $84.1^{\circ}$ –96.5° and O–Nb(2)–O angles are  $88.8^{\circ}$  and  $90.0^{\circ}$ . The NbO<sub>6</sub> octahedra in K<sub>2</sub>YNb<sub>2</sub>O<sub>15- $\delta$ </sub> are considered to be not significantly distorted from a regular octahedron.

As seen in Fig. 2,  $Y^{3+}$  and  $K^+$  ions in  $K_2YNb_5O_{15-\delta}$  are accommodated in the cavities formed by the linkage of the Nb<sub>5</sub>O<sub>15</sub> units. An  $Y^{3+}$  ion is surrounded by four O(4) at a distance of 2.385(3) Å, four O(2) at a distance of 2.534(7) Å, and four O(6) at a long distance of 3.078(6) Å as shown in Fig. 4. As the last distance is too far for O(6) to coordinate to the  $Y^{3+}$  ion, the coordination of the  $Y^{3+}$  ion with oxygen atoms can be regarded as 8-fold rather than 12-fold. A K<sup>+</sup> ion is coordinated by 15 oxygen atoms at distances which range from 2.885(6) to 3.644(8) Å (mean 3.175 Å) as shown in Fig. 5.

The framework of  $K_2 YNb_5O_{15-\delta}$  conforms to that of  $NaNb_6O_{15}F$  (13) or  $Ba_4CoTa_{10}O_{30}$  (21). Especially the



FIG. 4. ORTEP drawing of coordination of yttrium ion.

structures of  $K_2 YNb_5O_{15-\delta}$  and  $Ba_4CoTa_{10}O_{30}$  are isostructural with each other, although only a half of the sites for  $Y^{3+}$  ions in  $K_2 YNb_5 O_{15-\delta}$  are occupied by  $Co^{2+}$  ions in  $Ba_4CoTa_{10}O_{30}$ . The structure of  $K_2YNb_5O_{15-\delta}$  can also be related to those of the TlCa<sub>2</sub>Ta<sub>5</sub>O<sub>15</sub>-type structure (14–16) and the tetragonal and hexagonal tungsten bronze-type structures (17, 18), since all of these structures are composed of the Nb<sub>5</sub>O<sub>15</sub> basic units. In Fig. 6 schematic structures of  $K_2 YNb_5O_{15-\delta}$ , TlCa<sub>2</sub>Ta<sub>5</sub>O<sub>15</sub>-type, and tetragonal and hexagonal tungsten bronzes are projected along the c axis. These structural types are characterized by the basic structural unit of  $M_5O_{15}$  unit which is indicated by rectangles with thick line in Fig. 6. The hexagonal tungsten bronze-type is exceptional in this group of structural types, because the  $M_5O_{15}$  units are linked with the additional structural unit of an octahedron, while in other structural types the  $M_5O_{15}$  units share oxygen atoms of the octahedron at every corner of the rectangle with each other. The rectangles are arranged parallel along the *a* axis in  $K_2YNb_5O_{15-\delta}$  and  $TlCa_2Ta_5O_{15}$  so that the rectangles are



**FIG. 3.** ORTEP drawing of Nb<sub>5</sub>O<sub>15</sub> basic unit in  $K_2$ YNb<sub>5</sub>O<sub>15- $\delta$ </sub>.



FIG. 5. ORTEP drawing of coordination of potassium ion.



NaNb<sub>6</sub>O<sub>15</sub>F-type structure



Tetragonal tungsten bronze-type structure



 $m TlCa_2Ta_5O_{15}$ -type structure

Hexagonal tungsten bronze-type structure

 $FIG. \ 6. \ Schematic structures of NaNb_6O_{15}F-type, TlCa_2Ta_5O_{15}-type, and the tetragonal and hexagonal tungsten bronze-types.$ 

superposed along the *b* axis in  $TlCa_2Ta_5O_{15}$  but staggered in  $K_2YNb_5O_{15-\delta}$ . In the tetragonal tungsten bronze-type structure the rectangles are perpendicular to each other.

There are three types of crystallographic sites in the cavities formed by linkage of the  $M_5O_{15}$  units: types A, B, and C. The coordination numbers for the A, B, and C sites in idealized structures of these structural types are summarized in Table 4. There is no B site in the hexagonal tungsten bronze-type structure. The C site in the tricapped trigonal prism can be occupied only by very small ions such as the Li<sup>+</sup> ion (22) or the  $M^{5+}$  ion (M = Nb, Ta) (23, 24). The A site is occupied by large cations as found for K<sup>+</sup> ions with a coordination number of 15 in the pentagonal

# TABLE 4

The Coordination Numbers for the A, B, and C Sites in Idealized Structures of the Tetragonal Tungsten Bronze-(TTB), TlCa<sub>2</sub>Ta<sub>5</sub>O<sub>15</sub>-, and NaNb<sub>6</sub>O<sub>15</sub>F-Type Structures

| Site | TTB | TlCa <sub>2</sub> Ta <sub>5</sub> O <sub>15</sub> | NaNb <sub>6</sub> O <sub>15</sub> F |
|------|-----|---------------------------------------------------|-------------------------------------|
| A    | 15  | 18                                                | 15                                  |
| В    | 12  | 8                                                 | 8                                   |
| С    | 9   | 9                                                 | 9                                   |

tunnel of  $K_2 YNb_5 O_{15-\delta}$ . A similar A site is also reported for large ions in the tetragonal tungsten bronzes,  $NaNb_6O_{15}F$  and  $Ba_4CoTa_{10}O_{30}$  (21). In the case of the  $TlCa_2Ta_5O_{15}$ -type structure, the site with a coordination number of 18 in the hexagonal tunnel is referred to as the A site. The B site is located in the perovskite-like cavity (distorted cuboctahedron) and is occupied by cations with medium size. When the perovskite-like cavity is rather regular, a cation residing there is expected to have a coordination number of 12 as found in the tetragonal tungsten bronze-type structure. However, as mentioned above, the  $Y^{3+}$  ion in  $K_2 YNb_5O_{15-\delta}$  has the coordination number of 8 at the B site, because the perovskite cavity is deformed very much. Similarly the  $Co^{2+}$  ion in Ba<sub>4</sub>CoTa<sub>10</sub>O<sub>30</sub> (21) and the  $Ca^{2+}$  ion in TlCa<sub>2</sub>Ta<sub>5</sub>O<sub>15</sub> (21) are located at the B site in the deformed perovskite cavity with the coordination number of 8.

As seen in Fig. 6, the structure of  $K_2 YNb_5O_{15-\delta}$  can be derived from the TlCa<sub>2</sub>Ta<sub>5</sub>O<sub>15</sub>-type structure by translation of the rectangle by a/2 so that one of B sites with small coordination number remains as it is in the TlCa<sub>2</sub>Ta<sub>5</sub>O<sub>15</sub>type structure and two A sites in the pentagonal tunnel are formed instead of one A site in the hexagonal tunnel and one B site. As discussed by Dion *et al.* (15), the TlCa<sub>2</sub> Ta<sub>5</sub>O<sub>15</sub>-type structure is stabilized by large cations such as  $Cs^+$ ,  $Rb^+$ , and  $Tl^+$ , and in the series of  $RbLnNaTa_5O_{15}$ (Ln = rare earth metal) the structural type changes from the TlCa<sub>2</sub>Ta<sub>5</sub>O<sub>15</sub>-type to the tetragonal tungsten bronzetype when the B site cation becomes large enough to be adapted for the A site with a large coordination number of the latter. From the view point of ionic size and ratio of number of large and medium ions, it seems to be preferable for  $K_2$ YNb<sub>5</sub>O<sub>15- $\delta$ </sub> to have the structure with the cation arrangement similar to the tetragonal tungsten bronzetype structure. However, difference in size of the ion at the B site determines whether the tetragonal tungsten bronze or  $K_2 YNb_5O_{15-\delta}$ -type structure would be adopted. The  $Y^{3+}$  ion in  $K_2 YNb_5 O_{15-\delta}$  and the  $Co^{2+}$  ion in  $Ba_4 Co$  $Ta_{10}O_{30}$  are rather small compared with the rare earth ions in  $K_2LnNb_5O_{15}$  (Ln = rare earth metal) with the tetragonal tungsten bronze-type structure (20).

# CONCLUSION

A new reduced potassium yttrium niobate,  $K_2YNb_5$  $O_{15-\delta}$ , was prepared in a H<sub>2</sub> atmosphere at 1200°C and its crystal structure was determined by using single crystal Xray diffraction data. The crystal structure is built up by corner-sharing of the Nb<sub>5</sub>O<sub>15</sub> unit and can be compared with that of the same structural unit. Reversible oxidation and reduction can be observed as long as the structure of  $K_2YNb_5O_{15-\delta}$  is kept. However, after the transformation of O-K<sub>2</sub>YNb<sub>5</sub>O<sub>15</sub> to the tetragonal tungsten bronze-type structure reduction to  $K_2YNb_5O_{15-\delta}$  with the tetragonal tungsten bronze-type structure was not observed.

# REFERENCES

N. Kumada, N. Kinomura, R. Wang, and A. W. Sleight, *Mater. Res. Bull.* 29, 41 (1994).

- 2. J. Köhler and A. Simon, Z. Anorg. Allg. Chem. 572, 7 (1989).
- 3. M. J. Geselbracht and A. M. Stacy, J. Solid State Chem. 110, 1 (1989).
- K. Isawa, J. Sugiyama, K. Matsuura, A. Nozaki, and H. Ymauchi, *Phys. Rev. B* 47, 2849 (1993).
- B. Hessen, S. A. Sunshine, T. Siegrist, and R. Jimenez, *Mater. Res. Bull.* 26, 85 (1991).
- K. Ishikawa, G. Adachi, and J. Shiokawa, *Mater. Res. Bull.* 18, 653 (1983).
- A. Leclaire, M. M. Borel, A. Grandin, and B. Raveau, J. Solid State Chem. 83, 245 (1989).
- A. Benabbas, M. M. Borel, A. Grandin, A. Leclaire, and B. Raveau, J. Solid State Chem. 84, 365 (1990).
- A. Benabbas, M. M. Borel, A. Grandin, A. Leclaire, and B. Raveau, Acta. Crystallogr. Sect. C 49, 439 (1993).
- J. Akimitsu, J. Amano, H. Sawa, O. Nagase, K. Gyoda, and M. Kogai, *Jpn. J. Appl. Phys.* **30**, L1155 (1991).
- 11. N. Kumada, M. Ohtsuka, N. Kinomura, and A. W. Sleight, *Mater. Res. Bull.* in press.
- S. Y. Istomin, O. G. D'yachenko, E. V. Antipov, G. Svensson, and M. Nygren, *Mater. Res. Bull.* 29, 743 (1994).
- 13. S. Andersson, Acta Chem. Scand. 19, 2285 (1965).
- 14. M. Ganne, M. Doin, A. Verbaere, and M. Tournoux, J. Solid State Chem. 29, 9 (1979).
- 15. M. Doin, M. Ganne, and M. Tournoux, *Mater. Res. Bull.* **15**, 121 (1980).
- M. Doin, M. Ganne, M. Tournoux, and J. Ravez, *J. Solid State Chem.* 53, 422 (1984).
- 17. A. Magneli, Ark. Kemi 1, 213 (1949).
- 18. F. Takusagawa and R. A. Jacobson, J. Solid State Chem. 18, 163 (1976).
- Molecular Structure Corporation, "TEXSAN." The Woodlands, TX, 1993.
- B. A. Scott, E. A. Giess, G. Burns, and D. F. O'Kane, *Mater. Res. Bull.* 3, 831 (1968).
- 21. B. J. Tönnies and H. M. Buschbaum, Mh. Chem. 115, 1151 (1984).
- A. F. Wells, "Structural Inorganic Chemistry," p. 508. Clarendon Press, Oxford, 1975.
- 23. M. Lundberg and M. Sundberg, J. Solid State Chem. 62, 216 (1986).
- A. A. Awadalla and B. M. Gatehouse, J. Solid State Chem. 23, 349 (1978).